No hay productos en el carrito



Bioanalytical Chemistry
Mikkelsen, S. — Cortón, E.
2ª Edición Abril 2016
Inglés
Tapa dura
488 pags
789 gr
16 x 24 x 3 cm
ISBN 9781118302545
Editorial WILEY
LIBRO IMPRESO
-5%
136,12 €129,31 €IVA incluido
130,88 €124,34 €IVA no incluido
Recíbelo en un plazo de
2 - 3 semanas
LIBRO ELECTRÓNICO
-5%
86,67 €82,34 €IVA incluido
83,34 €79,17 €IVA no incluido
Acceso On Line
Inmediato
Description
A timely, accessible survey of the multidisciplinary field of bioanalytical chemistry
- Provides an all in one approach for both beginners and experts, from a broad range of backgrounds, covering introductions, theory, advanced concepts and diverse applications for each method
- Each chapter progresses from basic concepts to applications involving real samples
- Includes three new chapters on Biomimetic Materials, Lab-on-Chip, and Analytical Methods
- Contains end-of-chapter problems and an appendix with selected answers
Contents
Preface
Acknowledgments
1. Quantitative Instrumental Measurements
- 1.1 Introduction 1
- 1.2 Optical Measurements
- 1.2.1 UV-Visible Absorbance
- 1.2.2 Turbidimetry (Light-Scattering)
- 1.2.3 Fluorescence
- 1.2.4 Chemiluminescence and Bioluminescence
- 1.3 Electrochemical Measurements
- 1.3.1 Potentiometry
- 1.3.2 Amperometry
- 1.3.3 Impedimetry
- 1.4 Radiochemical Measurements
- 1.4.1 Scintillation Counting
- 1.4.2 Geiger Counting
- 1.5 Surface Plasmon Resonance
- 1.6 Calorimetry
- 1.6.1 Differential Scanning Calorimetry (DSC)
- 1.6.2 Isothermal Titration Calorimetry (ITC)
- 1.7 Automation: Microplates, Multiwell Liquid Dispensers and Microplate Readers
- 1.8 Calibration of Instrumental Signals
- 1.8.1 External Standards
- 1.8.2 Internal Standards
- 1.8.3 Standard Additions
- 1.9 Quantitative and Semi-Quantitative Measurements
- 1.9.1 Exact Concentration
- 1.9.2 Positive or Negative Result
- Suggested Reading
- Problems
2. Spectroscopic Methods for the Quantitation of Classes of Biomolecules
- 2.1 Introduction 29
- 2.2 Total Protein
- 2.2.1 Lowry Method
- 2.2.2 Smith (BCA) Method
- 2.2.3 Bradford Method
- 2.2.4 Ninhydrin Method
- 2.2.5 Other Protein Quantitation Methods
- 2.3 Total DNA
- 2.3.1 Diaminobenzoic Acid (DABA) Method
- 2.3.2 Diphenylamine (DPA) Method
- 2.3.3 Other Fluorometric Methods
- 2.4 Total RNA
- 2.5 Total Carbohydrate
- 2.5.1 Ferricyanide Method
- 2.5.2 Phenol-Sulfuric Acid Method
- 2.5.3 2-Aminothiophenol Method
- 2.5.4 Purpald Assay for Bacterial Polysaccharides
- 2.6 Free Fatty Acids
- References
- Problems
3. Enzymes
- 3.1 Introduction 52
- 3.2 Enzyme Nomenclature
- 3.3 Enzyme Commission Numbers
- 3.4 Enzymes in Bioanalytical Chemistry
- 3.5 Enzyme Kinetics
- 3.5.1 Simple One-Substrate Enzyme Kinetics
- 3.5.2 Experimental Determination of Michaelis-Menten Parameters
- 3.5.2.1 Eadie-Hofstee Method
- 3.5.2.2 Hanes Method
- 3.5.2.3 Lineweaver-Burk Method
- 3.5.2.4 Cornish-Bowden-Eisenthal Method
- 3.5.3 Comparison of Methods for the Determination of Km Values
- 3.5.4 One-Substrate, Two-Product Enzyme Kinetics
- 3.5.5 Two-Substrate Enzyme Kinetics
- 3.5.6 Examples of Enzyme-Catalyzed Reactions and their Treatment
- 3.5.7 Curve-Fitting for Enzyme Kinetic Data
- 3.6 Enzyme Activators
- 3.7 Enzyme Inhibitors
- 3.7.1 Competitive Inhibition
- 3.7.2 Noncompetitive Inhibition
- 3.7.3 Uncompetitive Inhibition
- 3.8 Enzyme Units and Concentrations
- Suggested Reading
- References
- Problems
4. Quantitation of Enzymes and their Substrates
- 4.1 Introduction 87
- 4.2 Substrate Depletion or Product Accumulation
- 4.3 Direct and Coupled Measurements
- 4.4 Classification of Methods
- 4.5 Instrumental Methods
- 4.5.1 Optical Detection
- 4.5.1.1 Absorbance
- 4.5.1.2 Fluorescence
- 4.5.1.3 Luminescence
- 4.5.1.4 Nephelometry
- 4.5.2 Electrochemical Detection
- 4.5.2.1 Amperometry
- 4.5.2.2 Potentiometry
- 4.5.2.3 Conductimetry
- 4.5.3 Other Detection Methods
- 4.5.3.1 Radiochemical
- 4.5.3.2 Manometry
- 4.5.3.3 Calorimetry
- 4.6 High-Throughput Assays for Enzymes and Inhibitors
- 4.7 Assays for Enzymatic Reporter Gene Products
- 4.8 Practical Considerations for Enzymatic Assays
- Suggested Reading
- References
- Problems
5. Immobilized Enzymes
- 5.1 Introduction 117
- 5.2 Immobilization Methods
- 5.2.1 Nonpolymerizing Covalent Immobilization
- 5.2.1.1 Controlled-Pore Glass
- 5.2.1.2 Polysaccharides
- 5.2.1.3 Polyacrylamide
- 5.2.1.4 Acidic Supports
- 5.2.1.5 Anhydride Groups
- 5.2.1.6 Thiol Groups
- 5.2.2 Crosslinking with Bifunctional Reagents
- 5.2.3 Adsorption
- 5.2.4 Entrapment
- 5.2.5 Microencapsulation
- 5.3 Properties of Immobilized Enzymes
- 5.4 Immobilized Enzyme Reactors
- 5.5 Theoretical Treatment of Packed-Bed Enzyme Reactors
- 5.6 Suggested Reading
- 5.7 References
- 5.8 Problems
6. Antibodies
- 6.1 Introduction 152
- 6.2 Structural and Functional Properties of Antibodies
- 6.3 Polyclonal and Monoclonal Antibodies
- 6.4 Antibody-Antigen Interactions
- 6.5 Analytical Applications of Secondary Antibody-Antigen Interactions
- 6.5.1 Agglutination Reactions
- 6.5.2 Precipitation Reactions
- Suggested Reading
- References
- Problems
7. Quantitative Immunoassays with Labels
- 7.1 Introduction 171
- 7.2 Labelling Reactions
- 7.3 Heterogeneous Immunoassays
- 7.3.1 Labelled-Antibody Methods
- 7.3.2 Labelled-Ligand Assays
- 7.3.3 Radioisotopes
- 7.3.4 Fluorophores
- 7.3.5 Chemiluminescent Labels
- 7.3.6 Enzyme Labels
- 7.4 Homogeneous Immunoassays
- 7.4.1 Fluorescent Labels
- 7.4.2 Enzyme Labels
- 7.5 Evaluation of New Immunoassay Methods
- Suggested Reading
- References
- Problems
8. Biosensors
- 8.1 Introduction 217
- 8.2 Biosensor Diversity and Classification
- 8.3 Recognition Agents
- 8.3.1 Natural Recognition Agents
- 8.3.2 Artificial Recognition Agents
- 8.4 Response of Enzyme-Based Biosensors
- 8.5 Examples of Biosensor Configurations
- 8.5.1 Ferrocene-Mediated Amperometric Glucose Sensor
- 8.5.2 Potentiometric Biosensor for Phenyl Acetate
- 8.5.3 Evanescent-Wave Fluorescence Biosensor for Bungarotoxin
- 8.5.4 Optical Biosensor for Glucose Based on Fluorescence Energy Transfer
- 8.5.5 Piezoelectric Sensor for Nucleic Acid Detection
- 8.5.6 Enzyme Thermistors
- 8.5.7 Fluorescence Sensor for Nitroaromatic Explosives Based on a Molecularly Imprinted Polymer
- 8.5.8 Immunosensor Microwell Arrays from Gold Compact Disks
- 8.5.9 Nanoparticle-Enhanced Detection of Thrombin by SPR
- 8.5.10 Environmental BOD and Toxicity Biosensors Based on Viable Cells
- 8.5.11 Detection of Viruses using a Surface Acoustic Wave (SAW) Biosensor
- 8.5.13 DNA Microarrays
- 8.5.12 MEMS Microcantilever Biosensor for Virus Detection
- 8.6 Evaluation of Biosensor Perfomance
- 8.7 In Vivo Applications of Biosensors
- 8.7.1 Biocompatible Materials
- 8.7.2 Physiological Environment of the Human Body
- 8.7.3 The Artificial Pancreas
- 8.7.4 An Enzymatic Fuel Cell as a Component of an Implanted Biosensing System
- 8.7.5 Other Examples of Implantable Biosensors
- Suggested Reading
- References
- Problems
9. Directed Evolution for the Design of Macromolecular Reagents
- 9.1 Introduction 273
- 9.2 Rational Design and Directed Evolution
- 9.3 Generation of Genetic Diversity
- 9.3.1 Polymerase Chain Reaction and Error-Prone PCR
- 9.3.2 DNA Shuffling
- 9.4 Linking Genotype and Phenotype
- 9.4.1 Cell Expression and Cell Surface Display (in vivo)
- 9.4.2 Phage Display (in vivo)
- 9.4.3 Ribosome Display (in vitro)
- 9.4.4 mRNA-Peptide Fusion (in vitro)
- 9.4.5 Microcompartmentalization (in vitro)
- 9.5 Identification and Selection of Successful Variants
- 9.5.1 Identification of Successful Variants Based on Binding Properties
- 9.5.2 Identification of Successful Variants Based on Catalytic Activity
- 9.6 Examples of Directed Evolution Experiments
- 9.6.1 Directed Evolution of Galactose Oxidase
- 9.6.2 a-Hemolysin Evolution
- Suggested Reading
- References
- Problems
10. Image-Based Bioanalysis
- 10.1 Introduction 298
- 10.2 Magnification and Resolution
- 10.3 Optical Microscopy
- 10.3.1 The Compound Light Microscope
- 10.3.2 The Confocal Microscope
- 10.3.3 Sample Preparation
- 10.3.4 General and Selective Stains
- 10.3.5 Fluorescence In situ Hybridization
- 10.3.6 Green Fluorescent Protein and its Analogues
- 10.4 Electron Microscopy
- 10.4.1 Principles and Instrumentation
- 10.4.2 Sample Preparation
- 10.4.3 Transmission Electron Microscopy (TEM)
- 10.4.4 Scanning Electron Microscopy (SEM)
- 10.5 Scanning Tunneling Microscopy
- 10.5.1 Principles and Instrumentation
- 10.5.2 Biological Applications
- 10.6 Atomic Force Microscopy (AFM)
- 10.6.1 Cantilevers and Operational Modes
- 10.6.2 Samples and Substrates
- 10.6.3 Biological Applications
- 10.6.4 Four-Dimensional (4D) Scanning
- 10.7 Scanning Electrochemical Microscopy (SECM)
- 10.7.1 Principles and Instrumentation
- 10.7.2 Samples and Substrates
- 10.7.3 Biological Applications
- Suggested Reading
- References
- Problems
11. Principles of Electrophoresis
- 11.1 Introduction 319
- 11.2 Electrophoretic Support Media
- 11.2.1 Paper
- 11.2.2 Starch Gels
- 11.2.3 Polyacrylamide Gels
- 11.2.4 Agarose Gels
- 11.2.5 Polyacrylamide-Agarose Gels
- 11.3 Effect of Experimental Conditions on Electrophoretic Separations
- 11.4 Electric Field Strength Gradients
- 11.5 Detection of Proteins and Nucleic Acids after Electrophoretic Separation
- 11.5.1 Stains and Dyes
- 11.5.2 Detection of Enzymes by Substrate Staining
- 11.5.3 The Southern Blot
- 11.5.4 The Northern Blot
- 11.5.5 The Western Blot
- 11.5.6 Detection of DNA Fragments on Membranes with DNA Probes
- Suggested Reading
- References
- Problems
12. Applications of Zone Electrophoresis
- 12.1 Introduction 350
- 12.2 Determination of Protein Net Charge and Molecular Weight using PAGE
- 12.3 Determination of Protein Subunit Composition and Subunit Molecular Weights
- 12.4 Molecular Weight of DNA by Agarose Gel Electrophoresis
- 12.5 Identification of Isoenzymes
- 12.6 Diagnosis of Genetic (Inherited) Disease
- 12.7 DNA Fingerprinting and Restriction Fragment Length Polymorphism
- 12.8 DNA Sequencing with the Maxam-Gilbert Method
- 12.9 Immunoelectrophoresis
- Suggested Reading
- References
- Problems
13. Isoelectric Focussing and 2D Electrophoresis
- 13.1 Introduction 378
- 13.2 Carrier Ampholytes
- 13.3 Modern IEF with Carrier Ampholytes
- 13.4 Immobilized pH Gradients (IPGs)
- 13.5 Two-Dimensional Electrophoresis
- Suggested Reading
- References
- Problems
14. Capillary Electrophoresis
- 14.1 Introduction 399
- 14.2 Electroosmosis
- 14.3 Elution of Sample Components
- 14.4 Sample Introduction
- 14.5 Detectors for Capillary Electrophoresis
- 14.5.1 Laser-Induced Fluorescence Detection
- 14.5.2 Mass Spectrometric Detection
- 14.5.3 Amperometric Detection
- 14.5.4 Radiochemical Detection
- 14.6 Capillary Polyacrylamide Gel Electrophoresis (C-PAGE)
- 14.7 Capillary Isoelectric Focussing (CIEF)
- Suggested Reading
- References
- Problems
15. Centrifugation Methods
- 15.1 Introduction 425
- 15.2 Sedimentation and Relative Centrifugal g Force
- 15.2.1 Biological Particles
- 15.3 Centrifugal Forces in Different Rotor Types
- 15.3.1 Swinging-Bucket Rotors
- 15.3.2 Fixed-Angle Rotors
- 15.3.3 Vertical Rotors
- 15.4 Clearing Factor (k)
- 15.5 Density Gradients
- 15.5.1 Materials Used to Generate a Gradient
- 15.5.2 Constructing Pre-Formed and Self-Generated Gradients
- 15.5.3 Redistribution of the Gradient in Fixed-Angle and Vertical Rotors
- 15.6 Types of Centrifugation Techniques
- 15.6.1 Differential Centrifugation
- 15.6.2 Rate-Zonal Centrifugation
- 15.6.3 Isopycnic Centrifugation
- 15.7 Harvesting Samples
- 15.8 Analytical Ultracentrifugation
- 15.8.1 Instrumentation
- 15.8.2 Sedimentation Velocity Analysis
- 15.8.3 Sedimentation Equilibrium Analysis
- 15.9 Selected Examples
- 15.9.1 Analytical Ultracentrifugation for Quaternary Structure Elucidation
- 15.9.2 Isolation of Retroviruses by Self-Generated Gradients
- 15.9.3 Isolation of Lipoproteins from Human Plasma
- Suggested Reading
- References
- Problems
16. Chromatography of Biological Macromolecules
- 16.1 Introduction 457
- 16.2 Units and Definitions
- 16.3 Plate Theory of Chromatography
- 16.4 Rate Theory of Chromatography
- 16.5 Size Exclusion (Gel Filtration) Chromatography
- 16.6 Gel Matrices for Size Exclusion Chromatography
- 16.7 Affinity Chromatography
- 16.7.1 Immobilization of Affinity Ligands
- 16.7.2 Elution Methods
- 16.7.3 Determination of Association Constants by High Performance Affinity Chromatography
- 16.8 Ion-Exchange Chromatography
- 16.8.1 Retention Model for Ion-Exchange Chromatography of Polyelectrolytes
- Suggested Reading
- References
- Problems
17. Mass Spectrometry of Biomolecules
- 17.1 Introduction 492
- 17.2 Basic Description of the Intrumentation
- 17.2.1 Soft Ionization Sources
- 17.2.1.1 Fast Atom/Ion Bombardment (FAB)
- 17.2.1.2 Electrospray Ionization (ESI)
- 17.2.1.3 Matrix-Assisted Laser Desorption/Ionization (MALDI)
- 17.2.2 Mass Analyzers
- 17.2.3 Detectors
- 17.3 Interpretation of Mass Spectra
- 17.4 Biomolecule Molecular Weight Determination
- 17.5 Protein Identification
- 17.6 Protein-Peptide Sequencing
- 17.7 Nucleic Acid Applications
- 17.8 Bacterial Mass Spectrometry
- Suggested Reading
- References
- Problems
18. Micro-TAS, Lab-on-a-Chip and Microarray Devices
- 18.1 Introduction 528
- 18.2 Device Fabrication Materials and Methods
- 18.3 Microfluidics
- 18.3.1 Fluid Transport
- 18.3.2 Valves and Reservoirs
- 18.3.3 Mixing and Sample Separation
- 18.4 Detectors
- 18.5 Examples of Bioanalytical Devices
- 18.5.1 DNA Separation Using a Nanofence Array Microfluidic Device
- 18.5.2 Two Dimensional Electrophoresis on a Microfluidic Chip
- 18.5.3 Microfluidic Antibody Capture for Single-Cell Proteomics
- 18.5.4 Multiplexed PCR Amplification and DNA Detection on a Microfluidic Chip
- 18.5.5 Silicone Protein Separation Chip Based on a Grafted Ion-Exchange Polymer
- 18.5.6 Circular, Biofunctionalized PEG Microchannels for Cell Adhesion Studies
- Suggested Reading
- References
- Problems
19. Validation of New Bioanalytical Methods
- 19.1 Introduction 541
- 19.2 Precision and Accuracy
- 19.3 Mean and Variance
- 19.4 RSD and Other Precision Estimators
- 19.4.1 Distribution of Errors and Confidence Limits
- 19.4.2 Linear Regression and Calibration
- 19.4.3 Precision Profiles
- 19.4.4 Limit of Quantitiation and Detection
- 19.4.5 Linearizing Sigmoidal Curves (Four-Parameter Log-Logit Model)
- 19.4.6 Effective Dose Method
- 19.5 Estimation of Accuracy
- 19.5.1 Standardization
- 19.5.2 Matrix Effects
- 19.5.2.1 Recovery
- 19.5.2.2 Parallelism
- 19.5.3 Interferences
- 19.6 Qualitative (Screening) Assays
- 19.6.1 Figures of Merit for Qualitative (Screening) Assays
- 19.7 Examples of Validation Procedures
- 19.7.1 Validation of a Qualitative Antibiotic Susceptibility Test
- 19.7.2 Measurement of Plasma Homocysteine byFluorescence Polarization Immunoassay (FPIA) Methodology
- 19.7.3 Determination of Enzymatic Activity of ß-Galactosidase
- 19.7.4 Establishment of a Cutoff Value for
Semi-Quantitative Assays for Cannabinoids
Suggested Reading
References
Answers to Selected Problems 571
Index
© 2025 Axón Librería S.L.
2.149.0