No hay productos en el carrito



Medical Devices: Surgical and Image-Guided Technologies
Culjat, M. — Singh, R. — Lee, H.
1ª Edición Noviembre 2012
Inglés
Tapa dura
456 pags
747 gr
16 x 24 x 3 cm
ISBN 9780470549186
Editorial JOHN WILEY & SONS
LIBRO IMPRESO
-5%
162,56 €154,43 €IVA incluido
156,31 €148,49 €IVA no incluido
Recíbelo en un plazo de
2 - 3 semanas
LIBRO ELECTRÓNICO
-5%
144,29 €137,08 €IVA incluido
138,74 €131,81 €IVA no incluido
Acceso On Line
Inmediato
Description
Medical Devices is a textbook for an introductory seminar course on biomedical devices and technology. The book covers devices and systems in diagnostic, surgical, and implant procedures, prepared by the much-respected faculty members at the UCLA School of Medicine. Technical contents are presented in a comprehensive manner, consistent with first-year students’ background level in mathematics, physics, chemistry, and biology. The chapters are written and organized in the form of independent modules, such that lectures can be configured with a high degree of flexibility from year to year.To gauge a preliminary assessment of the effectiveness of this book's technical coverage, nine of the authors participated in a one-quarter seminar course at UC Santa Barbara, receiving superb ratings and reviews. The class attracted students from all engineering majors, as well as the pre-med program, with a breadth of audience and interest level that this book carries through gracefully.
Table of contents
PREFACE 
  CONTRIBUTORS 
PART I INTRODUCTION TO MEDICAL DEVICES 1
1. Introduction 3
  Martin Culjat
- 1.1 History of Medical Devices 3
 - 1.2 Medical Device Terminology 6
 - 1.3 Purpose of the Book 10
 
2. Design of Medical Devices 11
  Gregory Nighswonger
- 2.1 Introduction 11
 - 2.2 The Medical Device Design Environment 11
 - 2.2.1 US Regulation 12
 - 2.2.2 Differences in European Regulation 13
 - 2.2.3 Standards 14
 - 2.3 Basic Design Phases 15
 - 2.3.1 Feasibility 15
 - 2.3.2 Planning and Organization—Assembling the Design Team 16
 - 2.3.3 When to Involve Regulatory Affairs 17
 - 2.3.4 Conceptualizing and Review 17
 - 2.3.5 Testing and Refinement 20
 - 2.3.6 Proving the Concept 20
 - 2.3.7 Pilot Testing and Release to Manufacturing 22
 - 2.4 Postmarket Activities 25
 - 2.5 Final Note 25
 
PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 27
3. Instrumentation for Laparoscopic Surgery 29
  Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson
- 3.1 Introduction 29
 - 3.2 Basic Principles 31
 - 3.3 Laparoscopic Instrumentation 34
 - 3.3.1 Trocars 34
 - 3.3.2 Standard Laparoscopic Instruments 37
 - 3.3.3 Additional Laparoscopic Instruments 42
 - 3.3.4 Specimen Retrieval Bags 44
 - 3.3.5 Disposable Instruments 44
 - 3.4 Innovative Applications 45
 - 3.5 Summary and Future Applications 46
 
4. Surgical Instruments in Ophthalmology 49
  Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman
- 4.1 Introduction 49
 - 4.2 Cataract Surgery 51
 - 4.2.1 Basic Technique 51
 - 4.2.2 Principles of Phacoemulsification 52
 - 4.2.3 Phacoemulsification Instruments 54
 - 4.2.4 Phacoemulsification Systems 55
 - 4.2.5 Future Directions 56
 - 4.3 Vitreoretinal Surgery 56
 - 4.3.1 Basic Techniques 56
 - 4.3.2 Principles of Vitrectomy 57
 - 4.3.3 Vitrectomy Instruments 58
 - 4.3.4 Vitrectomy Systems 60
 - 4.3.5 Future Directions 60
 - 4.4 Other Ophthalmic Surgical Procedures 61
 - 4.5 Conclusion 62
 
5. Surgical Robotics 63
  Jacob Rosen
- 5.1 Introduction 63
 - 5.2 Background and Leading Concepts 63
 - 5.2.1 Human–Machine Interfaces: System Approach 65
 - 5.2.2 Tissue Biomechanics 70
 - 5.2.3 Teleoperation 72
 - 5.2.4 Image-Guided Surgery 78
 - 5.2.5 Objective Assessment of Skill 79
 - 5.3 Commercial Systems 80
 - 5.3.1 ROBODOC (Curexo Technology Corporation) 80
 - 5.3.2 daVinci (Intuitive Surgical) 83
 - 5.3.3 Sensei X (Hansen Medical) 84
 - 5.3.4 RIO MAKOplasty (MAKO Surgical Corporation) 86
 - 5.3.5 CyberKnife (Accuray) 89
 - 5.3.6 Renaissance™ (Mazor Robotics) 91
 - 5.3.7 ARTAS System (Restoration Robotics, Inc.) 92
 - 5.4 Trends and Future Directions 93
 
6. Catheters in Vascular Therapy 99
  Axel Boese
- 6.1 Introduction 99
 - 6.2 Historic Overview 100
 - 6.3 Catheter Interventions 102
 - 6.4 Catheter and Guide Wire Shapes and Configurations 105
 - 6.4.1 Catheters 105
 - 6.4.2 Guide Wires 113
 - 6.5 Conclusion 116
 
PART III ENERGY DELIVERY DEVICES AND SYSTEMS 119
7. Energy-Based Hemostatic Surgical Devices 121
  Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh
- 7.1 Introduction 121
 - 7.2 History of Energy-Based Hemostasis 122
 - 7.3 Energy-Based Surgical Methods and Their Effects on Tissues 125
 - 7.3.1 Disambiguation 126
 - 7.3.2 Thermal Effects on Tissues 127
 - 7.4 Electrosurgery 128
 - 7.4.1 Electrosurgical Theory 128
 - 7.4.2 Cutting and Coagulation Techniques 130
 - 7.4.3 Equipment 131
 - 7.4.4 Considerations and Complications 133
 - 7.5 Future Of Electrosurgery 134
 - 7.6 Conclusion 135
 
8. Tissue Ablation Systems 137
  Michael Douek, Justin McWilliams, and David Lu
- 8.1 Introduction 137
 - 8.2 Evolving Paradigms in Cancer Therapy 138
 - 8.3 Basic Ablation Categories and Nomenclature 140
 - 8.4 Hyperthermic Ablation 140
 - 8.5 Fundamentals of In Vivo Energy Deposition 141
 - 8.6 Hyperthermic Ablation: Optimizing Tissue Ablation 143
 - 8.7 Radiofrequency Ablation 144
 - 8.8 RFA: Basic Principles 145
 - 8.9 RFA: In Vivo Energy Deposition 145
 - 8.10 Optimizing RFA 147
 - 8.11 Other Hyperthermic Ablation Techniques 149
 - 8.11.1 Microwave Ablation (MWA) 149
 - 8.11.2 MWA: Basic Principles 149
 - 8.11.3 MWA: In Vivo Energy Deposition 151
 - 8.11.4 Optimizing MWA 152
 - 8.12 Laser Ablation 153
 - 8.13 Hypothermic Ablation 154
 - 8.13.1 Cryoablation: Basic Concepts 154
 - 8.13.2 Cryoablation: In Vivo Considerations 154
 - 8.13.3 Optimizing Cryoablation Systems 154
 - 8.14 Chemical Ablation 157
 - 8.15 Novel Techniques 158
 - 8.15.1 High Intensity Focused Ultrasound (HIFU) 158
 - 8.15.2 Irreversible Electroporation (IRE) 159
 - 8.16 Tumor Ablation and Beyond 160
 
9. Lasers in Medicine 163
  Zachary Taylor, Asael Papour, Oscar Stafsudd, and Warren Grundfest
- 9.1 Introduction 163
 - 9.1.1 Historical Perspective 164
 - 9.1.2 Basic Operational Concepts 165
 - 9.1.3 First Experimental MASER (Microwave Amplification by Stimulated Emission of Radiation) 166
 - 9.2 Laser Fundamentals 167
 - 9.2.1 Two-Level Systems and Population Inversion 167
 - 9.2.2 Multiple Energy Levels 167
 - 9.2.3 Mode of Operation 169
 - 9.2.4 Beams and Optics 171
 - 9.3 Laser Light Compared to Other Sources of Light 174
 - 9.3.1 Temporal Coherence 174
 - 9.3.2 Spectral Coherence (Line Width) 175
 - 9.3.3 Beam Collimation 177
 - 9.3.4 Short Pulse Duration 177
 - 9.3.5 Summary 178
 - 9.4 Laser–Tissue Interactions 178
 - 9.4.1 Biostimulation 178
 - 9.4.2 Photochemical Interactions 179
 - 9.4.3 Photothermal Interactions 180
 - 9.4.4 Ablation 180
 - 9.4.5 Photodisruption 181
 - 9.5 Lasers in Diagnostics 181
 - 9.5.1 Optical Coherence Tomography 181
 - 9.5.2 Fluorescence Angiography 184
 - 9.5.3 Near Infrared Spectroscopy 185
 - 9.6 Laser Treatments and Therapy 186
 - 9.6.1 Overview of Current Medical Applications of Laser Technology 186
 - 9.6.2 Retinal Photodynamic Therapy (Photochemical) 188
 - 9.6.3 Transpupillary Thermal Therapy (TTT) (Photothermal) 188
 - 9.6.4 Vascular Birth Marks (Photocoagulation) 190
 - 9.6.5 Laser Assisted Corneal Refractive Surgery (Ablation) 191
 - 9.7 Conclusions 196
 
PART IV IMPLANTABLE DEVICES AND SYSTEMS 197
10. Vascular and Cardiovascular Devices 199
  Dan Levi, Allan Tulloch, John Ho, Colin Kealey, and David Rigberg
- 10.1 Introduction 199
 - 10.2 Biocompatibility Considerations 200
 - 10.3 Materials 202
 - 10.3.1 316L Stainless Steel 203
 - 10.3.2 Nitinol 203
 - 10.3.3 Cobalt–Chromium Alloys 204
 - 10.4 Stents 204
 - 10.5 Closure Devices 206
 - 10.6 Transcatheter Heart Valves 208
 - 10.7 Inferior Vena Cava Filters 212
 - 10.8 Future Directions–Thin Film Nitinol 214
 - 10.9 Conclusion 216
 
11. Mechanical Circulatory Support Devices 219
  Colin Kealey, Paymon Rahgozar, and Murray Kwon
- 11.1 Introduction 219
 - 11.2 History 220
 - 11.3 Basic Principles 221
 - 11.3.1 Biocompatibility and Mechanical Circulatory Support Devices 221
 - 11.3.2 Hemocompatibility: Microscopic Considerations 222
 - 11.3.3 Hemocompatibility: Macroscopic Considerations 223
 - 11.4 Engineering Considerations in Mechanical Circulatory Support 223
 - 11.4.1 Overview 223
 - 11.4.2 Pump Design 225
 - 11.4.3 Positive Displacement Pumps 225
 - 11.4.4 Rotary Pumps 226
 - 11.4.5 Pulsatile Versus Nonpulsatile Flow 228
 - 11.5 Devices 228
 - 11.5.1 The HeartMate XVE Left Ventricular Assist System 228
 - 11.5.2 The HeartMate II Left Ventricular Assist System 231
 - 11.5.3 Short-Term Mechanical Circulatory Support: The Intraaortic Balloon Pump 234
 - 11.5.4 Pediatric Mechanical Circulatory Support: The Berlin Heart 237
 - 11.6 The Future of MCS Devices 239
 - 11.6.1 CorAide 239
 - 11.6.2 HeartMate III 239
 - 11.6.3 HeartWare 240
 - 11.6.4 VentrAssist 240
 - 11.7 Summary 240
 
12. Orthopedic Implants 241
  Sophia N. Sangiorgio, Todd S. Johnson, Jon Moseley, G. Bryan Cornwall, and Edward 
  Ebramzadeh
- 12.1 Introduction 241
 - 12.1.1 Overview 241
 - 12.1.2 History 243
 - 12.2 Basic Principles 244
 - 12.2.1 Optimization for Strength and Stiffness 245
 - 12.2.2 Maximization of Implant Fixation to Host Bone 250
 - 12.2.3 Minimization of Degradation 251
 - 12.2.4 Sterilization of Implants and Instrumentation 253
 - 12.3 Implant Technologies 253
 - 12.3.1 Total Hip Replacement 254
 - 12.3.2 Technology in Total Knee Replacement 263
 - 12.3.3 Technology in Spine Surgery 268
 - 12.4 Summary 272
 
PART V IMAGING AND IMAGE-GUIDED TECHNIQUES 275
13. Endoscopy 277
  Gregory Nighswonger
- 13.1 Introduction 277
 - 13.2 Ancient Origins 278
 - 13.3 Modern Endoscopy 280
 - 13.3.1 Creating Cold Light 280
 - 13.3.2 Introduction of Rod-Lens Technology 280
 - 13.4 Principles of Modern Endoscopy 283
 - 13.4.1 Optics 284
 - 13.4.2 Mechanics 284
 - 13.4.3 Electronics 284
 - 13.4.4 Software 285
 - 13.5 The Imaging Chain 285
 - 13.5.1 Light Source (1) 286
 - 13.5.2 Telescope (2) 286
 - 13.5.3 Camera Head (3) 287
 - 13.5.4 Camera CCU (4) 287
 - 13.5.5 Video Cables (5) 287
 - 13.5.6 Monitor (6) 287
 - 13.5.7 Image Management Systems (7) 288
 - 13.6 Endoscopes for Today 288
 - 13.6.1 Rigid Endoscopes—Designs to Enhance Functionality 289
 - 13.6.2 Less Traumatic Ureterorenoscopes 290
 - 13.6.3 Advances in Flexible Endoscope Design 291
 - 13.6.4 Broader Functionality with New Technologies 294
 - 13.6.5 Enhancing Video Capabilities 299
 - 13.7 Endoscopy’s Future 301
 
14. Medical Ultrasound Devices 303
  Rahul Singh and Martin Culjat
- 14.1 Introduction 303
 - 14.2 Basic Principles of Ultrasound 304
 - 14.2.1 Basic Acoustic Physics 304
 - 14.2.2 Reflection and Refraction 307
 - 14.2.3 Attenuation 307
 - 14.2.4 Piezoelectricity 308
 - 14.2.5 Ultrasound Systems 310
 - 14.2.6 Resolution and Bandwidth 312
 - 14.2.7 Beam Characteristics 314
 - 14.3 Ultrasound Transducer Design 316
 - 14.3.1 Piezoelectric Material 317
 - 14.3.2 Backing Layers and Damping 318
 - 14.3.3 Matching Layers 318
 - 14.3.4 Mechanical Focusing 319
 - 14.3.5 Electrical Matching 320
 - 14.3.6 Sector Scanners 320
 - 14.3.7 Array Transducers 322
 - 14.3.8 Transducer Array Fabrication 325
 - 14.3.9 Regulatory Considerations 327
 - 14.4 Applications of Medical Ultrasound 329
 - 14.4.1 Image Guidance Applications 330
 - 14.4.2 Intravascular and Intracardiac Applications 332
 - 14.4.3 Intraoral and Endocavity Applications 333
 - 14.4.4 Surgical Applications 334
 - 14.4.5 Ophthalmic Ultrasound 335
 - 14.4.6 Doppler and Doppler Applications 336
 - 14.4.7 Therapeutic Applications 336
 - 14.5 The Future of Medical Ultrasound 338
 
15. Medical X-ray Imaging 341
  Mark Roden
- 15.1 Introduction 341
 - 15.2 X-ray Physics 342
 - 15.2.1 Photon Interactions with Matter 342
 - 15.2.2 Clinical Production of X-rays 343
 - 15.2.3 Patient Dose Considerations 346
 - 15.3 Two-Dimensional Image Acquisition 348
 - 15.4 Image Acquisition Technologies and Techniques 351
 - 15.4.1 Film 351
 - 15.4.2 Computed Radiography 354
 - 15.4.3 Digital Radiography 358
 - 15.4.4 Clinical Applications of 2D X-ray Techniques 360
 - 15.5 Basic 2D Processing Techniques 361
 - 15.5.1 Independent Pixel Operations 362
 - 15.5.2 Grouped Pixel Operations 363
 - 15.5.3 Image Transformation Operations 366
 - 15.6 Real-Time X-ray Imaging 367
 - 15.6.1 Fluoroscopy Technology 367
 - 15.6.2 Angiography 370
 - 15.7 Three-Dimensional X-ray Imaging 372
 - 15.8 Conclusion 373
 
16. Navigation in Neurosurgery 375
  Jean-Jacques Lemaire, Eric J. Behnke, Andrew J. Frew, and Antonio A. F. DeSalles
- 16.1 Basics of Neurosurgery 375
 - 16.1.1 General Technical Issues in Neurosurgery 375
 - 16.1.2 Instrumentation in Neurosurgery 376
 - 16.1.3 Complications 377
 - 16.1.4 Functional Neurosurgery 378
 - 16.1.5 Stereotactic Neurosurgery 378
 - 16.1.6 Neuroimaging for Neurosurgery 379
 - 16.2 Introduction to Neuronavigation 381
 - 16.3 Neuronavigation Systems 381
 - 16.3.1 The Tracking System 382
 - 16.3.2 The Display Unit 383
 - 16.3.3 The Control Unit 385
 - 16.4 Implementation of Neuronavigation 386
 - 16.4.1 Surgical Planning 386
 - 16.4.2 Patient Registration 387
 - 16.4.3 Navigation 389
 - 16.5 Augmented Reality and Virtual Reality 390
 - 16.6 Summary/Future 391
 
REFERENCES 395
  INDEX 425
© 2025 Axón Librería S.L.
2.149.0